‹ How to analyze survey results

What is nominal data

As mentioned before, nominal data includes different categories which can present some properties of respondents; e.g. gender, marital status, etc. Defining the categories is an important step and you need to carefully choose the ones which are meaningful for you and your work. It is necessary to determine your goal for defining such categories. In other words, you should always think about why you need these information and what you want to do with it.

As the first step you may identify the percentage of responses in each category. One common and efficient way to present nominal data is to use contingency tables (cross tab). This tables show how responses differ by each category.

As an example, let’s consider the following survey question and 100 fancy responses dealing with customer satisfaction:

Question: What do you like most about our product?

Quality Various colors Ease to use

Now let’s split the responses into two groups, namely, male and female. Now let’s say we can  we can generate the following contingency table for our responses:

Total/share Quality Various color Ease to use Total
Male 72% (18/25) 4% (2/25) 20%  (5/25) 25%  (25)
Female 29,3%  (22/75) 37,3%  (28/75) 33,3%  (25/75) 75%  (75)
Total 40%  (40) 30%  (30) 30%  (30) 100%  (100)

In case you like to go deeper in your data to investigate and measure the relationship between nominals, you can use some standard statistical test like chi-square test or multi-way tables. How to implement these methods and interpret the results, needs some college level knowledge of statistical inference, and therefore, are out of the scope of this article.


More about other data types

Ordinal data Numerical (ratio) data Interval data

 

Become a Legend Now ;)


Make your 1st free online survey today!



starMobile-ready surveys
starUnlimited responses
starLots of amazing features!